Deep energy method in topology optimization applications
نویسندگان
چکیده
This paper explores the possibilities of applying physics-informed neural networks (PINNs) in topology optimization (TO) by introducing a fully self-supervised TO framework that is based on PINNs. solves forward elasticity problem deep energy method (DEM). Instead training separate network to update density distribution, we leverage fact compliance minimization self-adjoint express element sensitivity directly terms displacement field from DEM model, and thus no additional needed for inverse problem. The moving asymptotes used as optimizer updating distribution. implementation Neumann, Dirichlet, periodic boundary conditions are described context model. Three numerical examples presented demonstrate capabilities: (1) Compliance 2D under different geometries loading, (2) 3D, (3) Maximization homogenized shear modulus design meta material unit cells. results show optimized designs DEM-based very comparable those generated finite method, shed light new way integrating PINN-based simulation methods into classical computational mechanics problems.
منابع مشابه
economic optimization and energy consumption in tray dryers
دراین پروژه به بررسی مدل سازی خشک کردن مواد غذایی با استفاده از هوای خشک در خشک کن آزمایشگاهی نوع سینی دار پرداخته شده است. برای آنالیز انتقال رطوبت در طی خشک شدن به طریق جابجایی، یک مدل لایه نازک برای انتقال رطوبت، مبتنی بر معادله نفوذ فیک در نظر گفته شده است که شامل انتقال همزمان جرم و انرژی بین فاز جامد و گاز می باشد. پروفایل دما و رطوبت برای سه نوع ماده غذایی شامل سیب زمینی، سیب و موز در طی...
15 صفحه اولDeep learning for topology optimization design
Generative modeling techniques are being rapidly developed in the field of deep learning, and they have been applied to topology optimization. The variational autoencoder (VAE) is a generative modeling technology that extends the autoencoder to generate new images with a limited latent space. We modified the basic VAE structure to encode optimization conditions and decode latent variables for t...
متن کاملA BINARY LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION
This paper proposes an effective algorithm based on the level set method (LSM) to solve shape and topology optimization problems. Since the conventional LSM has several limitations, a binary level set method (BLSM) is used instead. In the BLSM, the level set function can only take 1 and -1 values at convergence. Thus, it is related to phase-field methods. We don’t need to solve the Hamilton-Jac...
متن کاملTOPOLOGY OPTIMIZATION OF SPACE STRUCTURES USING ANT COLONY METHOD
In this article, the ant colony method is utilized for topology optimization of space structures. Strain energy of the structure is minimized while the material volume is limited to a certain amount. In other words, the stiffest possible structure is sought when certain given materials are used. In addition, a noise cleaning technique is addressed to prevent undesirable members in optimum topol...
متن کاملA topology optimization method based on the level set method incorporating a fictitious interface energy
This paper proposes a new topology optimization method, which can adjust the geometrical complexity of optimal configurations, using the level set method and incorporating a fictitious interface energy derived from the phase field method. First, a topology optimization problem is formulated based on the level set method, and the method of regularizing the optimization problem by introducing fic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mechanica
سال: 2022
ISSN: ['1619-6937', '0001-5970']
DOI: https://doi.org/10.1007/s00707-022-03449-3